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The problem of the translational motion and oscillations of the radius of a spherical gas bubble in a spherical flask filled with a 
weakly compressible liquid is considered when there is forced radial perturbation of the flask wall. The translational motion is 
that of the bubble under the action of an acoustic field when there is viscous drag and the effect of added mass. A system of 
differential equations is proposed which describes the combined oscillations of the radius and the translational motion of the 
bubble. This system includes an ordinary differential equation of the Herring-Flinn-Gilmore type which describes the evolution 
of the radius of the bubble. Bifurcation diagrams are constructed for the radius of the bubble, which reveal a repeating structure 
of the bifurcation set within the limits of the harmonic resonances of the system. The dynamic characteristics of the bubble for 
different equilibrium radii are investigated numerically in connection with the analysis of the stability of its position in space. 
© 2005 Elsevier Ltd. All rights reserved. 

The dynamics of cavitation bubbles in an acoustic field include both the oscillations of the radius of a 
bubble and the translational motion, that is, the displacement of the bubble in space. In a sufficiently 
strong acoustic field, cavitation bubbles oscillate in a non-linear manner and are one of the typical systems 
in which deterministic chaos manifests itself [1-3]. The non-linear aspects of the radial oscillations of 
the bubble surface have been investigated in many papers. The forced non-linear oscillations of a 
spherical gas bubble in an incompressible viscous liquid, subjected to the action of an acoustic field 
with different amplitudes of the pressure and frequencies, comparable with the resonance frequencies 
of the bubbles, have been investigated numerically in [4]. The results were presented in the form of 
resonance curves which show the dependence of the maximum radius of the bubble on the frequency 
of the acoustics field. It was formed that, in the case of an equilibrium radius R0 = 10 gm and at pressure 
amplitudes exceeding the static Blake threshold (Pb = 0.997 atm), discontinuous transitions occur 
between the possible resonance, there is a gradual breakdown of the harmonics and they are replaced 
by ultraharmonics. As a result of the investigation of the non-linear oscillations of a bubble of fixed 
equilibrium radius using the methods of chaotic dynamics, it has been shown that the transition to chaotic 
oscillations and the return to regular oscillations occurs by means of forward and reverse bifurcations 
of a doubling of the period, and also by means of tangential (saddle-nodal) bifurcations and that the 
domains in which strange attractors arise become larger when the amplitude of the pressure of the 
acoustic field increases [5, 6]. Resonance curves showing the dependence of the maximum bubble radius 
on its equilibrium radius have been investigated for different pressure amplitudes in [7]. The resonance 
curves bear a resemblance both to the resonance curves obtained earlier in [4] and the bifurcation 
diagrams in [5]. It has been shown that, at sufficiently high amplitudes of the acoustic field pressure 
(Pa > 1.2 atm), a so-called "giant response" is initiated in the range of micron bubbles, when the bubble 
radius increases by an order or more in the oscillation process [7-9]. In all the above-mentioned papers, 
it is assumed that the bubble is located in an unbounded volume of liquid; the translation motion of 
the bubble was not considered. 
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While the radial oscillations of the surface of a single bubble have been actively investigated by many 
researchers, less attention has been paid to the translational motion of the bubble. Nevertheless, non- 
linear effects can also occur in the translational motion and the investigation of the positional stability 
of a bubble is therefore an important problem, especially when simulating the phenomenon of 
sonoluminescence when a bubble is subjected to the action of an intense acoustic field. For instance, 
an experimental investigation of the bubble dynamics in a travelling acoustic wave shows that a bubble 
with an equilibrium radius R 0 -- 50 gm executes a chaotic zigzag-like motion in the direction in which 
the acoustic field varies if the sound intensity is sufficiently high (I = 59 gW/cm2,f = 70 kHz) [10]. An 
unstable "dancing" motion of a bubble has also been experimentally recorded in a standing acoustic 
wave [11]. One of the possible mechanisms for the occurrence of "dancing" motion of a bubble is based 
on the assumption of a distortion of its spherical shape [11-13]. The translational motion of a spherical 
bubble, close to its resonance size, in the field of a standing acoustic wave has been investigated 
numerically in [14]. The Rayleigh-Lamb-Plesset equation for an incompressible liquid was used to 
describe the oscillatory motion [15-17]. It has been shown that a bubble with an equilibrium radius 
somewhat smaller than its resonance radius executes both chaotic radial motion and chaotic translational 
motion, Later, in [18], the Herring-Flinn-Gilmore equation [19], which takes account of the 
compressibility of the liquid, was used to describe the oscillatory motion. Non-chaotic but periodic motion 
of the bubble occurred for the same equilibrium radii. Hence, sufficient attenuation for the development 
of stable solutions is ensured by the compressibility of the liquid. 

Below we present a numerical investigation of the dynamics of a gas bubble, which is somewhat smaller 
than its own resonance size, executing both radial oscillations and translational motion in a spherical 
flask filled with a viscous weakly compressible liquid in which a standing acoustic wave with an amplitude 
Pa = 1.8 and a f requencyf  -- 20 kHz is formed. It is assumed that the spherical shape of the bubble is 
not distorted. 

1. F O R M U L A T I O N  OF THE P R O B L E M  

We consider a spherical flask filled with a viscous weakly compressible liquid in which an acoustic wave 
is created in the form of a spherical standing wave. We will assume that the antinode of the acoustic 
wave is located at the centre of the flask and that the closest nodes are on its boundary. Such a simplified 
formulation of the problem is often used when simulating the dynamics of a single bubble [20-24]. The 
acoustic pressure distribution in the liquid, which is a solution of the linear wave equation for a weakly 
compressible liquid, can be represented in the form 

sinkr 
p(r ,  t) = Po + Pa kr 

where r is the translational coordinate, t is the time, P0 is the atmospheric pressure, Pa = -Pa sino~t is 
the acoustic pressure at the centre of the flask with amplitude Pa, k = co/c is the wave number, c is the 
velocity of sound in the liquid and ~ is the angular frequency of the acoustic wave. 

The corresponding velocity field in the liquid is given by the formula 

Pa tf coskr sinkr'~ 
l~l = Dler = - - - -COSf l )  ~ "-'~r2 ) er 

where er is the unit vector in the radial direction, 91 is the density and a~ l is the velocity of the liquid. 

2. M A T H E M A T I C A L  M O D E L  

In order to simulate the evolution of the bubble radius, models of the spherically symmetric oscillations 
of the surface of a single bubble in an unbounded volume of both an incompressible liquid (the 
Rayleigh-Lamb-Plesset equation) and a weakly compressible liquid (the Herring-Flinn-Gilmore 
equation) and models similar to these are conventionally used [25, 26]. In the case of a bounded volume 
of liquid, a mathematical model is used which describes the radial oscillations of the bubble surface in 
a spherical flask filled with a weakly compressible liquid when the flask walls serve as the source of the 
perturbation of the oscillations in the liquid [22-24]. It includes an ordinary differential equation which 
is analogous to the Herring-Flinn-Gilmore equation and an equation with a delay which relates the 
pressure on the flask walls to the change in the bubble radius. In this paper, it is assumed that the 
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oscillations of the bubble have no effect on the acoustic pressure distribution in the liquid and the radial 
oscillations of the bubble are therefore modelled by a Herr ing-Fl inn-Gilmore equation in the form 

(l _~)RK+ ~l~2(l _ff~) = (l +R_]Pw-p(r,t) R d( 
c] Pl ~ -~tc~ t pw-p(r ,  t)) (2.1) 

Here  R = R(t) is the variable bubble radius and Pw is the pressure in the liquid close to the bubble 
surface. Assuming that the gas in the bubble expands adiabatically and neglecting the vapour pressure 
in the bubble, the pressure in the liquid close to the bubble surface can be represented in the form 

( 2 t ~ ( R 0 )  3v 2 ~  4gR 
Pw = Po + -~oj\'-~ ) R R 

where R0 is the equilibrium bubble radius, cy is the surface tension coefficient, 31is the adiabatic exponent 
and I.t is the viscosity of the liquid. 

The translational motion is the progressive motion of the bubble under the action of the variable 
acoustic and gravitational fields when there is fluid drag and the added effect mass 

4 3 • 
~I tRoPgOb = Fg + F b + F m + F s (2.2) 

where pg is the density of the gas in the unperturbed bubble, Vb is the bubble velocity, Fg is the flotation 
force, Fb is the Bjerknes force, which acts as viewed from the acoustic wave and causes the bubble to 
be attracted to the antinode or node of the wave of the acoustic field, F m is the force due to the added 
masse effect and Fs is the viscous drag. 

The flotation force. We define the flotation force as the sum of the gravity force and the buoyancy force 

4 3 R 3 

where g is the acceleration due to gravity. 

The Bjerknes force. It is well known that a force F = - W p  acts on a body of volume V in a liquid 
with a pressure gradient Vp. The force F, which is usually averaged over time, is called the Bjerknes 
force. In this paper, the motion of bubbles is investigated in the time scale in which the acoustic field 
varies. We therefore define the Bjerknes force as the instantaneous magnitude of this force 

4 3 4 3 • F b = -~xR Vp(r, t) = ~xR pll)l (2.4) 

Note that the Bjerknes force and the buoyancy force are of the same nature: both forces are due to 
a pressure gradient or a difference in pressure on the opposite walls of a bubble. However, in the case 
of the buoyancy force, this is a gradient in the hydrostatic pressure Ptg while, in the case of the Bjerknes 
force, it is the acoustic pressure gradient. It is for this reason that the Bjerknes force is sometimes referred 
to as the acoustic force of buoyancy. 

The force due to the added effect mass. Assuming that there is a potential flow of the compressible 
liquid around the bubble, we write the additional momentum of the liquid which is set into motion by 
the bubble in the form 

1 
P = ~ V b P l ( O b - -  Ol) 

where Vb is the bubble volume. The change in this momentum with time leads to the appearance of an 
additional force of reaction which acts on the bubble. 

1 d ( 4  ~3 . vt))  (2.5) 
F m = ~ t t~ '~  ~ K  Pl(Ob - 
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The viscous drag force. As viewed from the liquid, a drag force, which is due to the viscosity of the 
liquid, acts on a moving bubble. At low Reynolds numbers (Re = 2Rpzl v~ - vb I/g ~ 1), neglecting the 
viscosity of the gas within the bubble compared with the viscosity of the liquid surrounding it, this force 
is equal to (see, for example, [17, 27]) 

F s = 4 n g R ( o / -  o o) (2.6) 

Substituting the expressions for the forces (2.3)-(2.6) into Eq. (2.2), we obtain the vector differential 
equation for the bubble velocity 

-I 2Pg(Ro']  3 
(2.7) 

where v = g/Pt is the kinematic viscosity of the liquid. 
A similar equation has been used by a number of researchers ([14, 28] and others) to solve problems 

associated with the motion of bubbles. 
In a polar system of coordinates (r, 0) with the pole at the centre of the flask, Eq. (2.7) reduces to 

the following system of scalar equations 

-1 2 0 
' cosO, 

(2.8) 

3. R E S U L T S  OF N U M E R I C A L  C A L C U L A T I O N S  

The system of non-linear differential equations (2.1), (2.8), which describes the combined radial oscillations 
and translational motion of a bubble, was investigated numerically. A fifth-order Runge-Kutta method 
was used, which enables one to select the length of the step automatically, such that the local error does 
not exceed a prescribed acceptable value [29]. This property of the method is particularly important since, 
at the instant when collapse occurs, it takes place very rapidly. Calculations were carried out for the 
following values of the physical parameters: P0 = 1 atm, Pa = 1.8 atm, co = 2re × 20 kHz, c = 1500 m s -t, 

3 1 3 1 1 2 Pt = 998 kg m -3, pg = i kg m - ,  (~ = 0.0725 N m - ,  g = 10- kg m- s - ,  7 = 1.4 and g = 9.8 m s- .  
The direction of the translational motion of the bubble is determined by the Bjerknes and buoyancy 

forces. Translational motion is a radial direction is caused by the Bjerknes force, which is larger than 
the buoyancy force by two orders of magnitude. A bubble can be repelled from the antinode (Fb [r > 0) 
or attracted to it (Fb[r < 0) depending on the equilibrium radius R0 and the radial translational 
coordinate r. Since Fb[ 0 ---- 0, the bubble motion in a polar direction is solely determined by the buoyancy 
force. The polar translational coordinate 0(t) increases monotically: 0 ~ n/2. This means that the bubble 
approaches the vertical axis, passing through the antinode of the acoustic field. 

A diagram of the directions of the averaged Bjerknes force for a bubble when an equilibrium radius 
R0 and a translational coordinate r is shown in Fig. l(a). Calculations of the Bjerknes force, averaged 
over the period of the acoustic field, were carried out for a fixed bubble when 5 < R 0 _< 45 gm and 
4 < r < 16 mm. The range of values of (R0, r) for which F b[r > 0 is denoted by a grey colour and the 
range of values for which Fb 1~ < 0 is denoted by a white colour. So, a bubble with R0 = 15 gm can be 
attracted to the antinode when r(t) [t = 0 > 7.5 mm. If, however, r(t) [t = 0 < 7.5 mm, the bubble will be 
replaced from the antinode and move towards the node. In any case, if occupies a stable position on 
the boundary of the domains attraction and repulsion at a distance of r = 7.5 mm from the antinode. 
Actually, the oscillations of the bubble radius induce high-frequency oscillations about its stable position 
with a period of the acoustic field. T = 50 and an amplitude of the order of 10 gm, which is comparable 
with the bubble size. A solution of this type can be called a quasistationary solution. 

The form of the steady translational motion of a bubble with initial coordinates (7.5 mm, n/3) is also 
in Fig. l(a). The time relaxation was taken to be equal to 500 periods of the acoustic field. The calculated 
maximum and minimum values of r(t) for each R 0 e [5, 45] gm after 200 periods of the acoustic wave 
are shown by the solid curves. The local maxima, corresponding to harmonic resonance of the bubble 
radius, are denoted by the points. In the case R 0, at which the curves rmax(R0) and r m i n ( e 0 )  coincide, 
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a quasistationary solution is obtained for the translational coordinate. High-frequency, low-amplitude 
oscillations of the bubble are not seen on the scale used for the diagram. Here, the curves also coincide 
with the boundary between the domains of attraction and repulsion. In the case of R0, for which no 
sharp boundary is traced between the domains of attraction and repulsion, the curves rmax(R0) and 
rmin(Ro) do not coincide. This means that the bubble performs chaotic low-frequency oscillations in a 
radial direction with an amplitude which is, on average, two orders of magnitude greater than the 
amplitude of the high-frequency oscillations. 

The bifurcation diagram for the bubble radius is shown in Fig. l(b). A hundred values of the bubble 
radius R(t)  were established corresponding to each value of the control parameter R0 at successive 
instants of time of the steady motion of the bubble t = nT. The set of values of Rp = R(t) ,  t = n T  is 
one of the projections of a Poincar6 section. In cases when all the points are superimposed on one 
another, the attractor (the attractive trajectory in phase space) is the limit cycle of a single period. This 
means that the period of the oscillatory motion of the bubble is equal to T. When the control parameter 
is changed, the system can escape from a stable state and bifurcation occurs with a qualitative change 
in the character of the process. If the non-linearity, which is inherent to the system, is such that the 
perturbation changes sign at the threshold of loss of stability during a single circuit of the limit cycle 
then, in order for the trajectory to be closed, it is necessary to perform a further circuit so that the period 
of the motion which has arisen is again twice as large as the period of the initial motion. The birth of 
a cycle with a period which is twice as great as the initial cycle will be the result of bifurcation. This is 
period-doubling bifurcation. Very often, bifurcations of the same nature follow again after it, if there 
is a further change in the parameter. The sequence of bifurcation values of the parameter accumulates 
to a definite limit, the critical point, which is the boundary of chaos. The transition to chaos through a 
cascade of bifurcations involving a period-doubling bifurcation is the Feigenbaum scenario [30]. 

Another situation may be encountered when, as a bifurcation point is approached, an unstable cycle 
approaches a stable limit cycle and, at the bifurcation point, the two cycles merge and disappear. Hence, 
no stable periodic orbits at all remain in the domain of the phase space being considered. This is inverse 
tangential or saddle-nodal bifurcation. The opening in the chaotic system of period 3 in Fig. 2(c) when 
the tangential bifurcation when R0 = 33.5 ~tm generates a stable cycle of period 3 and an unstable cycle 
of period 3 (not shown in the figure) serves as a simple example. It should be noted that tangential 
bifurcations are characteristic of the Feigenbaum scenario and represent a unique mechanism by which 
a cycle of odd period (unlike a period-doubling bifurcation) can appear. The windows in the chaotic 
system of period 3 and 4, which are generated by tangential bifurcations, are seen in Fig. l(b) within 
the limits of the last three harmonics. 
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A similarity of sections of the bifurcation diagram is observed within the limits of the harmonic 
resonances: successive period-doubling bifurcations occur which lead to chaotic oscillations of the bubble 
radius and the return to periodic oscillations through inverse period-doubling bifurcations and tangential 
(saddle-nodal) bifurcations. As R0 increase, the pattern becomes more complicated and the domains 
of chaotic oscillations of the bubble radius expand but the similarity of the curves is preserved. The 
translational characteristic r(t) also preserves an analogous similarity within the limits of the harmonic 
resonances. 

The link between the translational and radial characteristics of the bubble is clearly seen in Fig. 2 
for R o ~ [31, 33.75] gm. A quasistationary solution for the translational coordinate r(t) is obtained in 
the section A B C D  of Fig. 2(a). Point B corresponds to the first period-doubling bifurcation of the 
oscillations of the bubble radius. A second bifurcation occurs at the point C and, at the critical point 
D, there is both a transition to chaotic oscillations of the radius as well as a change in the form of the 
translational coordinate from a quasistationary form to a chaotic form. The curves rmax and fmi n become 
irregular in the section D E  and the amplitude of the chaotic translational oscillations (about 1 mm) is 
large compared with the quasistationary case. At point E, there is a return to a quasistationary solution 
for the translational coordinate r(t) and periodic oscillations of the radius. Regular dynamics of the 
bubble occur in the section EF.  A quasistationary solution for the translational coordinate is therefore 
obtained for values of R0 at which periodic oscillations of the bubble radius are observed: in cases when 
these oscillations become chaotic, the translation coordinate also changes in an irregular manner. 

The bifurcation diagram, ignoring the translational motion of the bubble, at a fixed distance r = 13 mm 
from the antinode, is shown in Fig. 2(c). It is seen that the transition to chaos takes place according to 
the Feigenbaum scenario. In Fig. 2(b), the fine structure of the bifurcations is blurred on account of 
the existence of translational motion. 
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The transition to chaos in the section R 0 ~ [31, 33] is illustrated in Fig. 3. The oscillations of the bubble 
radius are shown in the left-hand column, the phase trajectories in the middle column and the Poincar6 
sections in the right-hand column. Starting from the top, the radial characteristics are shown for 
R0 = 31 ~tm (from sectionAB in Fig. 2a and b), R0 = 32 ~m (from section BC), R0 = 32.3 ~tm (from 
section CD) and R0 = 33 ~tm (from section DE). In the first series, the period of the oscillations of the 
bubble radius is equal to the period of the acoustic field T. The attractor is the limit cycle of period T 
and all of the points of intersection with the phase trajectory are superimposed on one another since 
Rp/Ro and Rp take the same values over the period T and the Poincar6 section consists of a single point. 
In the second series, the oscillations of the bubble radius are repeated over two periods of the acoustic 
field. The phase trajectory is the limit cycle of period 2T which corresponds to the appearance of a 
further point in the Poincar6 section: a period-doubling occurs. In the third series, a subsequent period- 
doubling bifurcation is demonstrated, which leads to the birth of a limit cycle of period 4T. The 
oscillations of the bubble radius in the bottom series have a chaotic character and the phase trajectory 
is a strange attractor, the structure of which is also traced in the Poincar6 section where no two points 
coincide. 

The change in the translational coordinate in the course of prolonged action of the acoustic field is 
shown in Figs 4(a and b) in order to illustrate the chaotic "dancing" motion of the bubble when 
R0 = 33 ~tm and R0 = 40 ~tm from the two windows of irregular change in the translational coordinate 
(R 0 ~ [32.4, 33.5] ~tm and R0 e [37.5, 42] ~tm, see Fig. la and 2a). Chaotic oscillations of the bubble 
radius correspond to these regions of the parameter R0 (see Figs lb and 2b). It can be seen that the 
amplitude of the envelope of the translational coordinate r(t) can reach 3.5 mm. 

Besides the chaotic motion, a periodic "dancing" motion of the bubble was also observed. Figure 5 
shows the four regions of variations of the parameter R0 ("windows of periodicity") in which low- 
frequency quasiperiodic solution r(t) are obtained, and the sections of the bifurcation diagram for the 
bubble radius corresponding to them. Note that there is a similarity in the sections of the curves for 
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the translational and radial characteristics within the limits of the harmonic resonances. In the bifurcation 
diagram for the bubble radius, windows of chaotic radial oscillations, which emerge in the boundary 
laminar regions between the harmonic resonances, correspond to the "windows of periodicity". 

The change in the translational coordinate of the bubble is shown in Fig. 4(c-f) for each of the four 
regions for R 0 = 14.8, 17.4, 21.2, 34.0 gm respectively. The maximum amplitude of the envelope of the 
translational coordinate (Amo d = rma x - rmi n = 1.6 mm) and the period of the low-frequency modulation 
(Tmo a = 24 ms, Tmod = 500 X T) is observed when R0 e [21.1, 21.3] gin. The principal characteristics of 
the "dancing" motion of the bubble are presented in Table 1. 
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Chaotic motion Periodic motion 

R o, Ixm 32.4--33.5 3 7 . 5 - 4 2  14.77-14.86 17.35-17.46 21.1-21.3 33.7-34 
Amo a, m m  0.5 3.5 0.4 0.8 1.6 0.5 
Tr, oa, ms - 2 4.5 8 24 3.5 

Note that, as the equilibrium radius increases, the "windows of periodicity" which emerge become 
wider. Furthermore, the amplitude and period of the oscillations of the envelope of the translational 
coordinate of the bubble from each successive "window of periodicity" (apart from the last one when 
R0 ~ [33.7, 34]) also become larger. 

4. C O N C L U S I O N  

The bifurcation diagrams constructed for the radius of the bubble as a function of its equilibrium radius 
show that, within the limits of the harmonic resonance, the transition to chaotic oscillations and the 
return to periodic oscillations occur in accordance with the Feigenbaum scenario. There is therefore 
a similarity in the sections of the bifurcation diagrams in the regions of harmonic resonance and, as 
the equilibrium radius becomes larger, cascades of bifurcations are initiated and the regions of chaotic 
oscillations grow. 

The translational characteristic also preserves an analogous similarity. It has been shown that there 
are three modes for the translational coordinate, depending on the form of the radial oscillations: 
quasistationary, quasiperiodic and chaotic. On the other hand, the form of the radial oscillations is 
determined not only by the equilibrium radius of the bubble but, also, by its position in space. Hence, 
when investigating bubble dynamics, it is not sufficient to consider merely the radial oscillations of its 
surface; it is also necessary to take account of the displacement of the bubble in space. 

A quasistationary mode is obtained for those equilibrium radii for which the oscillations of the bubble 
are periodic with period T, 2T and so on. In the same place where the radial oscillations are chaotic, 
translational coordinate changes in an irregular manner and a chaotic "dancing" motion of the bubble 
occurs, during which the amplitude of the translational coordinate envelope can reach 3.5 ram. Apart  
from the chaotic "dancing" motion of the bubble, a quasiperiodic translational motion also occurs for 
certain equilibrium radii which is the superposition of regular low-frequency oscillations of sufficiently 
large amplitude with high-frequency oscillations of small amplitude. In the bifurcation diagram for the 
bubble radius, the windows of chaotic radial oscillations, which arise in the boundary laminar regions 
between the harmonic resonances when R0 > 13 gm, correspond to "windows of  periodicity". 

At the same time, the maximum amplitude of the envelope of the translational coordinateAmod = 16 
and the maximum period of the low-frequency modulation Tmoa = 24 ms (Tmod = 500 X 7) are observed 
when R 0 ~ [21.1, 21.3] gm. 

The result obtained can be interpreted as a possible mechanism for the occurrence of chaotic 
"dancing" motion of a bubble, which does not assume a breakdown of the spherical form of the bubble. 

This research was supported financially by the Russian Foundation for Basic Research (02-01-97912). 
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